One-point compactification on convergence spaces
نویسندگان
چکیده
منابع مشابه
On Smallest Compactification for Convergence Spaces
In this note we obtain necessary and sufficient conditions for a convergence space to have a smallest Hausdorff compactification and to have a smallest regular compactification. Introduction. A Hausdorff convergence space as defined in [1] always has a Stone-Cech compactification which can be obtained by a slight modification of the result in [3]. But in general this need not be the largest Hau...
متن کاملMetrization of the One-point Compactification
A new, more widely applicable, constructive definition of locally compact metric space is given, and a metric one-point compactification is constructed. Classically, this provides a simpler, more direct, construction of a metric on the one-point compactification of a separable locally compact metric
متن کاملOne-point extensions of locally compact paracompact spaces
A space $Y$ is called an {em extension} of a space $X$, if $Y$ contains $X$ as a dense subspace. Two extensions of $X$ are said to be {em equivalent}, if there is a homeomorphism between them which fixes $X$ point-wise. For two (equivalence classes of) extensions $Y$ and $Y'$ of $X$ let $Yleq Y'$, if there is a continuous function of $Y'$ into $Y$ which fixes $X$ point-wise. An extension $Y$ ...
متن کاملOn statistical type convergence in uniform spaces
The concept of ${mathscr{F}}_{st}$-fundamentality is introduced in uniform spaces, generated by some filter ${mathscr{F}}$. Its equivalence to the concept of ${mathscr{F}}$-convergence in uniform spaces is proved. This convergence generalizes many kinds of convergence, including the well-known statistical convergence.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 1994
ISSN: 0161-1712,1687-0425
DOI: 10.1155/s0161171294000402